jueves, 14 de junio de 2012

          CONTRACCIÓN MUSCULAR 






                                                            Esquema de un musculo 

La contracción muscular es el proceso fisiológico en el que los músculos desarrollan tensión y se acortan o estiran (o bien pueden permanecer de la misma longitud) por razón de un previo estímulo de extensión. Estas contracciones producen la fuerza motora de casi todos los músculos superiores, por ejemplo, para desplazar el contenido de la cavidad a la que recubren (músculo liso) o mueven el organismo a través del medio o para mover otros objetos (músculo estriado).
Las contracciones involuntarias son controladas por el sistema nervioso central, mientras que el cerebro controla las contracciones voluntarias, y la médula espinal controla los reflejos involuntarios.

                  Musculo estriado


El músculo esquelético y cardíaco son músculos estriados por razón de su apariencia en estrías bajo el microscopio, debido al altamente organizado patrón de bandas A y bandas I. En estado de relajación las fibras de miosina y actina, las proteínas en los filamentos de la zona A, apenas se superponen entre sí, mientras que la actina se superpone casi al completo sobre los filamentos de miosina en el estado de contracción. Los filamentos de actina, se han desplazado sobre los filamentos de miosina y sobre ellos mismos, de tal manera que se entrelazan entre sí en mayor mecanismo de deslizamiento de filamentos.
La contracción dependera de los niveles de Ca^(2+) citoplasmatico. El calcio al unirse a la troponina que recubre la actina, deja libre los puntos de union de esta con la miosina. El hecho de que aumenten las concentraciones citoplasmaticas radica en la invervacion que tiene el musculo estriado. Cuando una neurona motora desarrolla un PA sobre el m. estriado esqueletico (el cardiaco tiene contraccion propia, sin neurona motora) se liberara Acetilcolina sobre las celulas musculares (uniendose a su receptor nicotinico ionotropico), esto provocará una despolarización en la membrana que se transmitira a lo largo del musculo. La despolarizacion llegará al Reticulo Sarcoplasmico y gracias a los Tubos T se aproximara el potencial para la liberacion intracelular del Ca acumulado. Esta [Ca] aun no será suficiente para producir la contraccion por lo que también habra una entrada de calcio extracelular por los canales de Ca. De esta manera los puntos de union miosina-actina estan libres y al unirse se produce la contraccion. Cuando llega el momento de la relajación habra que romper los enlaces para que el musculo no este contraido. Estos enlaces se rompen gracias a la accion de la miosina como ATPasa, que por hidrolisis de ATP rompe el enlace. Este proceso se vera favorecido solo cuando las [Ca] disminuyan. Esto es posible gracias a la existencia de bombas de Ca en el reticulo sarcoplasmico que vuelven a guardar el Ca (1ATP hidrolizado por cada 2Ca que entran), la presencia del intercambiador Na-Ca en la membrana celular permitirá la salida de mas Ca al medio extracelular. Si alguna de estas bobas fallaran se produciria la Tetanizacion (los musculos quedan contraidos)

Los filamentos de actina se deslizan hacia adentro entre los filamentos de miosina debido a fuerzas de atracción resultantes de fuerzas mecánicas, químicas y electrostáticas generadas por la interacción de los puentes cruzados de los filamentos de actina.
  1. En reposo, las fuerzas de atracción entre los filamentos de actina y miosina están inhibidas.
  2. Los potenciales de acción se originan en el sistema nervioso central y viaja hasta llegar a la membrana de la motoneurona: la fibra muscular.
  3. El potencial de acción activa los canales de calcio dependientes de voltaje en el axón haciendo que el calcio fluya dentro de la neurona.
  4. El calcio hace que las vesículas, conteniendo el neurotransmisor llamado acetilcolina, se unan a la membrana celular de la neurona, liberando la acetilcolina al espacio sináptico donde se encuentran la neurona con la fibra muscular estriada.
  5. La acetilcolina activa receptores nicotínicos de la acetilcolina en la fibra muscular abriendo los canales para sodio y potasio haciendo que ambos se muevan hacia donde sus concentraciones sean menores: sodio hacia dentro de la célula y potasio hacia fuera.
  6. La nueva diferencia de cargas causada por la migración de sodio y potasio despolariza (la hace más positiva) el interior de la membrana, activando canales de calcio dependientes de voltaje localizados en la membrana celular (canales de dihidropiridina) los cuales por medio de un cambio conformacional terminan activando de manera mecánica a los receptores de Ryanodina ubicados en el retículo endoplásmico de la fibra muscular, llamado retículo sarcoplasmático (RS).
  7. El calcio sale del retículo sarcoplasmático y se une a la proteína troponina C, presente como parte del filamento de actina, haciendo que module con la tropomiosina, cuya función es obstruir el sitio de unión entre la actina y la miosina.
  8. Libre del obstáculo de la tropomiosina, ocurre la liberación de grandes cantidades de iones calcio hacia el sarcoplasma. Estos iones calcio activan las fuerzas de atracción en los filamentos, y comienza la contracción.
  9. La miosina, lista con anticipación por la compañía energética de ATP se une a la actina de manera fuerte, liberando el ADP y el fosfato inorgánico causando un fuerte halón de la actina, acortando las bandas I una a la otra y produciendo contracción de la fibra muscular.

En todo este proceso también se necesita energía para mantener la contracción muscular, que proviene de los enlaces ricos en energía del adenosintrifosfato (ATP), que se desintegra en adenosindifosfato (ADP) para proporcionar la energía requerida.

                                         El corazón es un ejemplo de musculo estriado

Tipos de contracciones

Contracciones Isotonicas

La palabra isotonicas significa (iso: igual - tónica: tensión) igual tensión.
Se define como contracciones isotónicas a aquellas, desde el punto de vista fisiológico,contracciones en las que las fibras musculares además de contraerse, modifican su longitud.
Las contracciones isotónicas son las más comunes en la mayoría de los deportes, actividades físicas y actividades correspondientes a la vida diaria, ya que en la mayoría de las tensiones musculares que se ejercen suelen ir acompañadas por acortamiento y alargamiento de las fibras musculares de un músculo determinado.
Las contracciones isotónicas se dividen en: concéntricas y excéntricas.

Contracciones Concentricas

Una contracción concéntrica ocurre cuando un músculo desarrolla una tensión suficiente para superar una resistencia, de forma tal que éste se acorta, y moviliza una parte del cuerpo venciendo dicha resistencia. Un claro ejemplo es cuando llevamos un vaso de agua a la boca para beber, existe acortamiento muscular concéntrico, ya que los puntos de inserción de los músculos se juntan, se acortan o se contraen.
En el gimnasio podríamos poner los siguientes ejemplos:
  • a. Máquina de extensiones.
    • Cuando levantamos las pesas, el músculo cuádriceps se acorta con lo cual se produce la contracción concéntrica. Aquí los puntos de inserción del músculo cuádripces se acercan, por ello decimos que se produce una contracción concéntrica.
  • b. Tríceps con polea.
    • Al bajar el brazo y extenderlo para entrenar el tríceps, estamos contrayendo el tríceps en forma concéntrica. Aquí los puntos de inserción del músculo tríceps braquial se acercan, por ello decimos que se produce una contracción concéntrica.
En síntesis, decimos que cuando los puntos de inserción de un músculo se acercan, la contracción que se produce es «concéntrica».

              Haciendo un ejercicio de Triceps con polea conseguimos una contración Concentrica

Contracciones Excéntricas 


Cuando una resistencia dada es mayor que la tensión ejercida por un músculo determinado, de forma que éste se alarga, se dice que dicho músculo ejerce una contracción excéntrica. En este caso el músculo desarrolla tensión alargándose, es decir, extendiendo su longitud. Un ejemplo claro es cuando llevamos el vaso desde la boca hasta apoyarlo en la mesa, en este caso el bíceps braquial se contrae excéntricamente. En este caso actúa la fuerza de gravedad, ya que si no, se produciría una contracción excéntrica y se relajarían los músculos del brazo, y el vaso caería hacia el suelo a la velocidad de la fuerza de gravedad. Para que esto no ocurra, el músculo se extiende contrayéndose en forma excéntrica.
En este caso podemos decir que cuando los puntos de inserción de un músculo se alargan, se produce una contracción excéntrica. Aquí se suele utilizar el término alargamiento bajo tensión. Este vocablo «alargamiento», suele prestarse a confusión ya que si bien el músculo se alarga y extiende, lo hace bajo tensión y yendo más lejos no hace más que volver a su posición natural de reposo.
  • a. Máquina de extensiones.
    • Cuando bajamos las pesas, el músculo cuádripces se extiende, pero se está produciendo una contracción excéntrica. Aquí los puntos de inserción del músculo cuádripces se alejan, por ello decimos que se produce una contracción excéntrica.
  • b. Tríceps con polea.
    • Al subir el brazo el tríceps braquial se extiende bajo resistencia. Aquí los puntos de inserción del músculo tríceps braquial se alejan, por ello decimos que se produce una contracción «excéntrica».

    Contracciones Isometricas

    La palabra isométrica significa (iso: igual, métrica: medida/longitud ) igual medida o igual longitud.
    En este caso el músculo permanece estático, sin acortarse ni alargarse, pero aunque permanece estático genera tensión. Un ejemplo de la vida cotidiana sería cuando llevamos a un chico en brazos, los brazos no se mueven, mantienen al niño en la misma posición y generan tensión para que el niño no se caiga al piso. No se produce ni acortamiento ni alargamiento de las fibras musculares.
    En el deporte se produce en muchos casos, un ejemplo podría ser en ciertos momentos del wind surf, cuando debemos mantener la vela en una posición fija. Con lo cual podríamos decir que se genera una contracción estática, cuando generando tensión no se produce modificación en la longitud de un músculo determinado.

             Cuando usamos nuestra fuerza para mantener recta la vela es una contracción Isometrica

    Contracciones Auxotonicas

    Este caso es cuando se combinan contracciones isotónicas con contracciones isométricas. Al iniciarse la contracción, se acentúa más la parte isotónica, mientras que al final de la contracción se acentúa más la isométrica.
    Un ejemplo práctico de este tipo de contracción lo encontramos cuando se trabaja con «extensores». El extensor se estira hasta un cierto punto, el músculo se contrae concéntricamente, mantenemos unos segundos estáticamente (isométricamente) y luego volvemos a la posición inicial con una contracción en forma excéntrica.

    Contracciones Isocineticas

    Se trata más bien de un nuevo tipo de contracción, por lo menos en lo que refiere a su aplicación en la práctica deportiva. Se define como una contracción máxima a velocidad constante en toda la gama de movimiento. Son comunes en aquellos deportes en lo que no se necesita generar una aceleración en el movimiento, es decir, en aquellos deportes en los que lo que necesitamos es una velocidad constante y uniforme, como puede ser la natación o el remo. El agua ejerce una fuerza constante y uniforme, cuando aumentamos la fuerza, el agua aumenta en la resistencia. Para ello se diseñaron los aparatos isocinéticos, para desarrollar a velocidad constante y uniforme durante todo el movimiento.
    Aunque las contracciones isocinéticas e isotónicas son ambas concéntricas y excéntricas, no son idénticas, sino por el contrario son bastante distintas, ya que como dijimos anteriormente las contracciones isocinéticas son a velocidad constante regulada y se desarrolla una tensión máxima durante todo el movimiento. En las contracciones isotónicas no se controla la velocidad del movimiento con ningún dispositivo, y además no se ejerce la misma tensión durante el movimiento, ya que por una cuestión de palancas óseas varía la tensión a medida que se realiza el ejercicio. Por ejemplo, en extensiones de cuádripces cuando comenzamos el ejercicio, ejercemos mayor tensión que al finalizar por varias razones:
  • una es por que vencemos la inercia.
  • la otra es porque al acercarse los puntos de inserción muscular, el músculo ejerce menor tensión.
En el caso de los ejercicios isocinéticos, éstas máquinas están preparadas para que ejerzan la misma tensión y velocidad en toda la gama de movimiento.
Para realizar un entrenamiento con máquinas isocinéticas se necesitan equipos especiales. Dichos equipos contienen básicamente, un regulador de velocidad, de manera que la velocidad del movimiento se mantiene constante, cualquiera que sea la tensión producida en los músculos que se contraen. De modo que si alguien intenta que el movimiento sea tan rápido como resulte posible, la tensión engendrada por los músculos será máxima durante toda la gama de movimiento, pero su velocidad se mantendrá constante.
Es posible regular la velocidad del movimiento en muchos de estos dispositivos isocinéticos y la misma puede variar entre 0º y 200º de movimiento por segundo. Muchas velocidades de movimiento durante diversas pruebas atléticas reales superan los 100º/s .
Otras de estas máquinas tienen la posibilidad de leer e imprimir la tensión muscular generada.
Lamentablemente, dichos dispositivos solo están disponibles en centros de alto rendimiento deportivo por sus altos costos. No cabe duda que la ganancia de fuerza muscular es mucho mayor con dichos tipos de entrenamiento, pero hay que tener en cuenta que en muchos deportes se necesita vencer la inercia y generar una aceleración, y por ello este tipo de dispositivos no serían muy adecuados para ello, ya que controlan la inercia y la aceleración.


              

               Relajacion

La relajación es el momento en que la contracción da fin. Las diferentes fibras (miosina, actina) entran en su lugar y se encuentran con la aparición de la estría H. La relajación es el resultado del fin del impulso nervioso en la placa neuromuscular.

                  Despues de hacer ejercicio es importante que los musculos se relajen y tengan un descanso adecuado

 
  
 
              COLEOPTEROS 
 Los coleópteros (Coleoptera), (del griego κολεός koleos: "caja o estuche", πτερον pteron: "ala") son un orden de insectos con unas 375.000 especies descritas; tiene tantas especies como las plantas vasculares o los hongos y 66 veces más especies que los mamíferos. Contiene más especies que cualquier otro orden en todo el reino animal.
El nombre vulgar de escarabajos se usa como sinónimo de coleópteros, pero muchos tienen nombres comunes propios, como gorgojos, carcomas, barrenillos o mariquitas entre otros.
Los coleópteros presentan una enorme diversidad morfológica y ocupan virtualmente cualquier hábitat, incluidos los de agua dulce, aunque su presencia en ambientes marinos es mínima. La mayoría de los coleópteros son fitófagos, y muchas especies pueden constituir plagas de los cultivos, siendo las larvas las que causan la mayor parte de los daños agrícolas y forestales.
                                                        Ciervo volante
Los coleópteros tiene las piezas bucales de tipo masticador, y las alas delanteras (primer par de alas) transformadas en duros escudos, llamados élitros, que forman una armadura que protege la parte posterior del tórax, incluido el segundo par de alas, y el abdomen. Los élitros no se usan para el vuelo, pero deben (en la mayoría de las especies) ser levantadas para poder usar las alas traseras. Cuando se posan, las alas traseras se guardan debajo de los élitros. La mayoría de los coleópteros pueden volar, pero pocos alcanzan la destreza de otros grupos, como por ejemplo las moscas, y muchas especies vuelan sólo si es imprescindible. Algunos tienen los élitros soldados y las alas posteriores atrofiadas, lo que les inhabilita para volar.
                  ADULTOS
Los coleópteros sufren una metamorfosis completa con estados de larva, pupa y adulto netamente diferenciados. La larva normalmente sufre muchas mudas. Por el contrario, en los órdenes de insectos hemimetábolos o exopterigotos las larvas o ninfas experimentan una metamorfosis incompleta o parcial por lo que se parecen a los adultos.
                                        CABEZA
-Generalmente de tipo prognato; consta de diversos escleritos que están delimitados por suturas y que forman un conjunto sólido denominado cápsula cefálica, en la que se pueden diferenciar las siguientes regiones: vértex, frente, genas (mejillas). clípeo (epistoma) y labro.

-Poseen un par de ojos compuestos que sólo faltan en algunas especies endogeas y carvernícolas. En general faltan los ocelos, excepto en algunos Staphylinidae y Dermestidae.

-Antenas insertadas a los lados de la cabeza, muy variables en forma y longitud, pero casi siempre presentan 11 artejos.

-Piezas bucales masticadoras, raramente modificados para absorber líquidos.

-Mandíbulas robustas, en forma de tenaza, con frecuencia provistas de dentículos en el margen interno (retináculo). En algunos Lucanidae alcanzan un tamaño desmesurado, mientras que en Scarabaeoidea coprófagos se reducen a delgadas láminas membranosas.

-Maxilas formadas por 4 artejos, cardo, estipes, galea y lacinia y están provistas de palpos maxilares de 3 a 5 artejos.

-Labio (Labium). Pieza impar, resultado de la fusión de un par de apéndices, que cubre ventralmente las maxilas. El labio posee además un par de pequeños palpos labiales, de 1 a 3 artejos.

                  TORAX
-Protórax. Muy desarrollado y casi siempre libre, a diferencia de la mayoría de órdenes de insectos, en que está reducido y estrechamente asociado al mesotórax. El esclerito dorsal forma el pronoto o escudo (scutum), el esclerito ventral el prosterno y los escleritos laterales las propleuras con dos pequeños escleritos adicionales a cada lado, los episternos y los epímeros protorácicos.

-Mesotórax y Metatórax están fusionados y su parte dorsal (mesonoto y metanoto) está oculta bajo los élitros, a excepción del escutelo, que pertenece al mesotórax, y que es casi siempre visible; mesosterno y metasterno son visibles en la parte ventral, así como las mesopleuras y metapleuras en los lados, con sus correspondientes episternos y epímeros. El metasterno está bien desarrollado y presenta un endosternito simple.

-Élitros. Las alas mesotorácicas o alas anteriores están modificadas en élitros, más o menos endurecidos, rígidos, no plegables, desprovistos de venación, que cubren parcial o totalmente las alas posteriores y el abdomen y que casi siempre se reúnen en la línea media formando una sutura recta. En otros órdenes de insectos que también tienen las alas anteriores esclerotizadas (Blattodea, Hemiptera), normalmente se solapan una a otra cuando están en reposos. Los Dermaptera tienen élitros similares a los de los coleópteros, pero el plegamiento de las alas membranosas, la metamorfosis y otras características son completamente diferentes.

-Alas. Las alas metatorácicas o las posteriores, cuando están desarrolladas, son membranosas, plegadas longitudinalmente y casi siempre transversalmente y son las únicas responsables de la propulsión durante el vuelo. Los demás órdenes de endopterigotas (excepto en Strepsiptera) usan ambas alas (anteriores y posteriores) o sólo las anteriores para volar. El mecanismo de plegado de las alas bajo los élitros es exclusivo del orden y tiene gran importancia taxonómica.
  
                       
                                               Alas de un Coleoptero

-Patas. Se insertan, en posición totalmente ventral, en las cavidades coxales en las cuales las coxas están profundamente encajadas; en la mayoría de los demás órdenes de insectos las coxas tienden a estar completamente expuestas y situadas más lateralmente. Constan de 6 artejos: coxa, trocánter, fémur, tibia, tarso (subdividido en varios segmentos o tarsómeros) y pretarso. Los 5 tarsómeros que presentan los tarsos primitivos (pentámeros), pueden reducirse a 4 (criptopentámeros, tetrámeros) o a 3 (trímeros).

                                         ABDOMEN
-El abdomen consta usualmente de 10 segmentos en el macho y de 9 en la hembra. Los tergitos están poco esclerotizados y cubiertos por los élitros (menos en Staphylinidae y otros grupos), excepto el último, que recibe el nombre de pigidio. En casi todos los coleópteros los esternitos 3 al 5 están bien esclerotizados y son visibles externamente; el esternito 1 está ausente, el 2 es con frecuencia sólo visible lateralmente y el 8 muchas veces está retraído en el segmento genital (9). Los esternito visibles externamente se denominan ventritos; así, el ventrito 1 correspone al esternito 2 o al 3, según los grupos. El número de ventritos es usualmente de 5 (esternitos 3 al 7); es de 6 cuando el esternito 2 es visible o el 8 no está invaginado en el áipce del abdomen, pudiendo existir 7 ventritos si estas dos condiciones de dan a a vez.

-Genitalia. El aparato copulador masculino se denomina edeago (aedeagus). Consta de tres partes: el tegmen, a su vez compuesto de falobase o pieza basal y un par de parámeros (lóbulos laterales); el pene o lóbulo medio, normalmente envuelto en el tegmen; y el saco interno (endophallus), primariamente membranosos pero que puede estar armado de espículas y, a veces de un flagelo (flagellum) largo y esclerotizado. El edeago está envuelto por el segmento genital (9º segmento abdominal) que desarrolla en algunos grupos un largo y estrecho esclerito denominado spiculum gastrale.

                  REPRODUCCION Y DESARROLLO

Los coleópteros se reproducen casi siempre de manera sexual; la partenogénesis es excepcional. Las hembras liberan feromona o emiten sonidos para atraer los machos. Después de un breve cortejo, en general no muy sofisticado, se produce el apareamiento en que el macho se sube sobre el dorso de la hembra. Después, la hembra busca un sustrato adecuado para depositar los huevos y lo prepara para que las futuras larvas encuentren las mejores condiciones para su desarrollo.
Las larvas de los coleópteros utilizan virtualmente cualquier sustrato como alimento; son muy frecuentes las larvas fitófagas que se desarrollan y se alimentan encima o dentro de productos vegetales (hojas, raíces, madera, etc.); un caso notable es el de algunos coleópteros coprófagos, en que el adulto hace una pelota de excrementos, excava un nido subterráneo y deposita los huevos; los coleópteros necrófagos de la familia Silphidae buscan cadáveres de pequeños animales, los entierran y hacen la puesta. Hay larvas depredadoras muy activas, como las de los carábidos. Son numerosos los casos de vigilancia y cuidado de las larvas.
Los coleópteros presentan una metamorfosis completa (holometabolía), con estadios de larva, pupa e imago (adulto). Las larvas pasan por diferentes estadios (entre uno y quince) separados por mudas; en general, las larvas de cada estadio son parecidas, pero en algunos coleópteros parásitos, como los Meloidae, aparecen estadios larvarios con características muy diferentes, fenómeno conocido como hipermetamorfosis. Todas las larvas de coleópteros tienen en común la presencia de una cápsula cefálica bien diferenciada y provista de piezas bucales de tipos masticador. En cambio, el aspecto general es muy diverso en los diferentes grupos.
Las larvas del último estadio buscan un lugar apropiado para pupar. Las pupas son muy poco móviles o totalmente inmóviles; algunas especies construyen capullos de materiales diversos y/o celdas en el mismo sustrato donde ha crecido la larva (por ejemplo, dentro de madera). Después de la metamorfosis emerge el imago (adulto) que sólo tendrá que endurecer la cutícula y buscar pareja.

                                          Larva de Mariquita 

   ALIMENTACIÓN EN COLEÓPTEROS 

La enorme variedad de nichos ecológicos que los coleópteros ocupan en la naturaleza, se refleja en una gran variedad de regímenes alimenticios.
  • Antófagos: se alimentan de flores, como Oxythyrea funesta (Cetoniinae).
  • Carpófagos, o frugívoros: se alimentan de frutos, como Cetonia o Potosia (Cetoniinae).
  • Coprófagos: se alimentan de deyecciones, como muchos Geotrupidae, Scarabaeinae o Aphodiinae.
  • Depredadores: cazan y se alimentan de otros animales (insectos, lombrices, caracoles, babosas), como la mayoría de Adephaga, Coccinellidae, Histeridae, Staphylinidae, etc.
  • Espermófagos: se alimentan de semillas, como los Bruchidae.
  • Filófagos: se alimentan de hojas, como la mayoría de Chrysomelidae. En esta categoría se incluyen temibles plagas para la agricultura.
  • Micófagos, o fungívoros: se alimentan de hongos, como los Mycetophagidae o Ciidae.
  • Necrófagos: se alimentan de cadáveres, como los Silphidae.
  • Polinífagos, o polinívoros: se alimentan de polen, como muchos Oedemeridae y bastantes Cerambycidae.
  • Rizófagos: se alimentan de raíces.
  • Saprófagos: se alimentan de materia vegetal en descomposición.
  • Xilófagos: se alimentan de madera, como las larvas de Anobiidae, Cerambycidae o Scolytidae.
Cabe destacar que no existe ningún coleóptero que sea hematófago, es decir que se alimente de sangre.


                                               Esta ha sido la entrada educativa de -El Señor J-
                                          El misterioso y guapo Señor J.





lunes, 3 de octubre de 2011

Aloja Cuates!

Muy buenas a todos mis lectores, que espero que sean algo mas que mi estimado profesor de biologia cuyo nombre creo que no pondre (Juanmi), en esta entrada quiero presentar mi falsa identidad de Señor J para usar un blog nada aburrido que ira en mayor medida sobre biologia, espero que sea una herramienta util para compartir los conocimientos que ire asimilando en esta ciencia tan increible que es la que estudia a los seres vivos. no me considero ni mucho menos un escritor decente, asique si os molesta alguna falta de hortografya o una falta de tilde o mala acentuacion, no teneis mas que... fastidiaros. no es un blog de lengua asique no espereis mas de estas letras mal escritas.
con este tochamen me despido ya presentado ante mi publico.
Un cordial saludo y un beso con lengua a ser posible "El señor J"